3D Bioplotter Research Papers

Displaying all papers by T. Guo (5 results)

Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model

Biotechnology and Bioengineering 2018 Volume 116, Issue 1, Pages 181-192

Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium–trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast–endothelium interactions under dynamic culture. In this study, we developed a dynamic three‐dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations…

3D Printing Bioactive PLGA Scaffolds Using DMSO as a Removable Solvent

Bioprinting 2018 Volume 10, June 2018, Article e00038

Present bioprinting techniques lack the methodology to print with bioactive materials that retain their biological functionalities. This constraint is due to the fact that extrusion-based printing of synthetic polymers is commonly performed at very high temperatures in order to achieve desired mechanical properties and printing resolutions. Consequently, current methodology prevents printing scaffolds embedded with bioactive molecules, such as growth factors. With the wide use of mesenchymal stem cells (MSCs) in regenerative medicine research, the integration of growth factors into 3D printed scaffolds is critical because it can allow for inducible MSC differentiation. We have successfully incorporated growth factors into extrusion…

3D printed biofunctionalized scaffolds for microfracture repair of cartilage defects

Biomaterials 2018 Volume 185, Pages 219-231

While articular cartilage defects affect millions of people worldwide from adolescents to adults, the repair of articular cartilage defects still remains challenging due to the limited endogenous regeneration of the tissue and poor integration with implants. In this study, we developed a 3D-printed scaffold functionalized with aggrecan that supports the cellular fraction of bone marrow released from microfracture, a widely used clinical procedure, and demonstrated tremendous improvement of regenerated cartilage tissue quality and joint function in a lapine model. Optical coherence tomography (OCT) revealed doubled thickness of the regenerated cartilage tissue in the group treated with our aggrecan functionalized scaffold…

Imaging stem cell distribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography

Biotechnology and Bioengineering 2017 Volume 115, Issue 1, Pages 257-265

Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2∼3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration and…

3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution

Biofabrication 2017 Volume 9, Number 2, Article 024101

In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients.…

PLGA